Synthesis of 3-[(acetylamino)(aryl)methyl]-4-hydroxycoumarins Mohammad Anary-Abbasinejad*, Hossein Anaraki-Ardakani, Azimeh Saidipoor and **Mahmood Shojaee**

Department of Chemistry, Islamic Azad University, Yazd Branch, PO Box 89195-155, Yazd, Iran

One-pot, three-component reaction between aryl aldehydes, 4-hydroxycoumarin, and acetonitrile in the presence of chlorosulfonic acid affords 3-[(acetylamino)(aryl)methyl]-4-hydroxycoumarins in excellent yields.

Keywords: chlorosulfonic acid, 4-hydroxycoumarin, three-component reaction, aryl aldehydes

Today, with the emergence of high-speed parallel synthesis, the multi-component reaction (MCR) is widely employed for the rapid assembly of arrays with high molecular diversity.1 Coupled with a post-condensation modification, the power of these reactions is increased even further, giving rise to a plethora of complex, pharmacologically relevant templates for screening purposes.²

The synthesis of coumarins and their derivatives has attracted considerable attention from organic and medicinal chemists for many years as a large number of natural products contain this heterocyclic nucleus. They are widely used as additives in food, perfumes, cosmetics, pharmaceuticals³ and optical brighteners⁴ and dispersed fluorescent and laser dyes.⁵ Thus the synthesis of derivatives of this nucleus is of much interest.

Three-component reaction between an enolic system such as acetophenone or β-dicarbonyl compounds, an aryl aldehyde and acetonitrile is known as the modified Dakin-West reaction. This reaction is usually carried out in the presence of an excess amount of acetyl chloride and catalysed by an acid. A number of catalysts such as CoCl2,6 montmorilonit K-10 clay, ⁷ H₂SO₄/SiO₂, ⁸ Heteropoly acids, ⁹ and silica sulfuric acid¹⁰ have been employed to effect this transformation. Here we report that the similar three-component reaction between 4-hydroxycoumarin, aryl aldehydes and acetonitrile in the presence of chlorosulfonic acid affords 3-[(acetylamino)(aryl) methyl]-4-hydroxycoumarins in nearly quantitative yields (Scheme 1). This reaction is carried out cleanly with no need to use any other activator or catalyst.

Results and discussion

The structure of compounds 3a-i is deduced from their IR, ¹H, and ¹³C NMR spectra. The mass spectra of compounds 3a-i are fairly similar and display molecular ion peaks. The ¹H NMR spectrum of **3a** exhibits a sharp line at δ = 1.99 ppm for the protons of methyl group. The methine and NH protons couple each other and two doublets are observed for them at 6.59 and 8.49 ppm respectively. When the ¹H NMR

spectrum is recorded after addition of some D2O to the d6-DMSO solution of 3a the doublet related to NH proton was disappeared and the doublet related to methine proton was converted to a singlet. The proton of hydroxy group resonates in the range of 12.00-13.00 ppm as a very broad signal and in some cases it is so broadened that isn't observed. The ¹³C NMR spectrum of compound 3a shows 16 distinct signals in consistent with the proposed structure.

Four-component reaction between 2 equivalent of 4-hydroxycoumarin and terphthaldehyde 4 in acetonitrile in the presence of 2.2 equivalent of chlorosulfonic acid affords the addition product 5 in 98% yield. The ¹H NMR spectrum of compound 5 exhibits only a singlet at 7.24 ppm for the protons of the aldehyde subunit. ¹³C NMR spectrum of this compound exhibits two signals at 126.69 and 139.66 ppm for aldehyde subunit. These observations are consistent with the symmetrical structure of compound 5.

A reasonable mechanism for formation of compounds 3a-i is presented in Scheme 3. Acetonitrile attacks to the condensation product of 4-hydroxycoumarin and aldehyde in the presence of chlorosulfonic acid to afford the cation 7 which hydrolyses to product 3.

Here we report a simple and efficient one-pot synthesis of 3-[(acetylamino)(aryl)methyl]-4-hydroxycoumarins by three-component reaction between 4-hydroxycoumarin, aryl aldehydes and acetonitrile in the presence of chlorosulfonic acid. The advantages of this method are simply available starting materials, short reaction times, easy and clean workup and excellent yields.

Experimental

Melting points were determined with an electrothermal 9100 apparatus. Elemental analyses were performed using a Heraeus CHN-O-Rapid analyser. Mass spectra were recorded on a FINNIGAN-MAT 8430 mass spectrometer operating at an ionisation potential of 70 eV. IR spectra were recorded on a Shimadzu IR-470 spectrometer. ¹H and ¹³C NMR spectra were recorded on Bruker DRX-500 Avance spectrometer at solution in d₆-DMSO using TMS as internal standard. The chemicals used in this work purchased from fluka (Buchs, Switzerland) and were used without further purification.

Scheme 1

^{*} Correspondent. E-mail: mohammadanary@yahoo.com

Scheme 2

Scheme 3

General procedure

To a magnetically stirred solution of 4-hydroxycoumarin (3 mmol) and aldehyde (3 mmol) in acetonitrile (15 ml) was added chlorosulfonic acid (3.3 mmol) at room temperature. The reaction mixture was then stirred for 1 h. The mixture was poured into 50 ml ice-water. The solid product was filtered, washed with ice-water and recrystalised from ethyl acetate/n-hexane to give the pure product.

N-[(4-Hydroxy-2-oxo-2H-chromen-3-yl)phenylmethyl]acetamide (3a): White powder, m.p. 184–186°C, IR (KBr) (v_{max} cm⁻¹): 3320 (NH), 1674, 1629, (2 C=O). Analyses: Calcd. for C₁₈H₁₅NO₄: C, 69.89; H, 4.89; N, 4.53%. Found: C, 69.9; H, 4.6; N, 4.6. MS (*m/z*, %): 309 (6). ¹H NMR (500 MHz, d₆-DMSO): δ 1.99 (3 H, s, C*H*₃), 6.59 (1 H, d, ${}^{3}J_{HH}$ = 9 Hz, CH), 7.20 (1 H, t, ${}^{3}J_{HH}$ = 7 Hz, CH of C₆H₅), 7.30 (4 H, m, 4 CH of C₆H₅), 7.40 (2 H, m, 2 CH of coumarin moiety), 7.65 (1 H, t, ${}^{3}J_{HH}$ = 8 Hz, CH of coumarin moiety), 8.05 $(1 \text{ H}, d, {}^{3}J_{HH} = 8 \text{ Hz}, CH \text{ of coumarin moiety}), 8.49 (1 \text{ H}, d, {}^{3}J_{HH} = 9 \text{ Hz},$ NH), 12.49 (1 H, very broad, OH). ¹³C NMR (125.8 MHz, d₆-DMSO): δ 23.42 (CH₃), 47.98 (CH), 106.69, 117.00, 117.15, 124.65, 124.87, 133.24, 153.24, 162.28, and 170.55 (carbons of coumarin moiety), 126.94, 127.37, 128.87, and 141.38 (carbons of C_6H_5), 162.60

N-[(4-Chlorophenyl)(4-hydroxy-2-oxo-2H-chromen-3-yl)]methyl]acetamide (3b): White powder, m.p. 175-177°C, IR (KBr) (v_{max} cm⁻¹): 3325 (NH), 1677, 1637, (2 C=O). Analyses: Calcd. for C₁₈H₁₄ClNO₄: C, 62.89; H, 4.10; N, 4.07%. Found: C, 62.8; H, 4.2; N, 4.1. MS (*m/z*, %): 343 (5). ¹H NMR (500 MHz, d₆-DMSO): δ 1.99 (3 H, s, CH₃), 6.61 (1 H, d, ${}^{3}J_{HH}$ = 8 Hz, CH), 7.38 (6 H, m, 2 CH of coumarin moiety and 4 CH of C₆H₄Cl), 7.65 (1 H, t, $^{3}J_{HH} = 8$ Hz, CH of coumarin moiety), 8.04 (1 H, d, $^{3}J_{HH} = 8$ Hz, CH of coumarin moiety), 8.53 (1 H, d, ${}^{3}J_{HH} = 8$ Hz, NH), 12.50 (1 H, very broad, OH). ¹³C NMR (125.8 MHz, d₆-DMSO): δ 22.96 (CH₃), 46.97 (CH), 105.87, 116.53, 116.81, 124.30, 124.54, 132.98, 152.85, 162.05, and 170.14 (carbons of coumarin moiety), 128.37, 128.45 131.52, and 140.24 (carbons of C_6H_4Cl), 162.63 (NC=O).

N-[(4-Bromophenyl)(4-hydroxy-2-oxo-2H-chromen-3-yl) methyl]acetamide (3c): White powder, m.p. 172-174°C, IR (KBr) $(v_{max} \text{ cm}^{-1})$: 3235 (NH), 1668, 1625, (2 C=O). Analyses: Calcd. for C₁₈H₁₄BrNO₄: C, 55.69; H, 3.63; N, 3.61%. Found: C, 55.8; H, 3.6; N, 3.5. MS (m/z, %): 387 (7). H NMR (500 MHz, d₆-DMSO): δ 1.98 (3 H, s, CH₃), 6.55 (1 H, d, ${}^{3}J_{\text{HH}} = 8$ Hz, CH₃), 7.26 (2 H, d, ${}^{3}J_{\text{HH}} = 8$ Hz, CH₃), 7.40 (2 H, m, 2 CH₃ of coumarin moiety), 7.49 (2 H, d, ${}^{3}J_{HH} = 8 H_{Z}$, 2 CH of $C_{6}H_{4}Br$), 7.66 (1 H, t, ${}^{3}J_{HH} = 8 Hz$, CH of coumarin moiety), 8.04 (1 H, d, ${}^{3}J_{HH} = 8$ Hz, CH of coumarin moiety), 8.49 (1 H, d, ${}^{3}J_{HH}$ = 8 Hz, NH), 12.35 (1 H, very broad, OH). ¹³C NMR (125.8 MHz, d₆-DMSO): δ 23.35 (CH₃), 47.40 (CH), 106.25, 116.89, 117.23, 124.69, 124.97, 133.42, 153.24, 162.40, and 170.52 (carbons of coumarin moiety), 120.37, 129.22 131.67, and 141.09 (carbons of C_6H_4Br), 162.44 (NC=O).

N-[(2-Chlorophenyl)(4-hydroxy-2-oxo-2H-chromen-3-yl)]methyl]acetamide (3d): White powder, m.p. 208-210°C, IR (KBr) (v_{max} cm⁻¹): 3225 (NH), 1662, 1625, (2 C=O). Analyses: Calcd. for $C_{18}H_{14}CINO_4$: C, 62.89; H, 4.10; N, 4.07%. Found: C, 62.9; H, 4.2; N, 4.2. MS (m/z, %): 343 (11). ¹H NMR (500 MHz, d₆-DMSO): δ 1.95 (3 H, s, C H_3), 6.49 (1 H, d, $^3J_{HH}$ = 7 Hz, C H_3), 7.19–7.39 (6 H, m, 2 CH of courarin moiety and 4 CH of C_6H_4CI), 7.65 (1 H, $^3J_{HH}$) = J_4 (1 H, J_4), 7.89 (1 H, J_4), 7.80 (1 H, J_4), 7.89 (1 H, $J_$ ${}^{3}J_{HH} = 8 \text{ Hz}$, CH of coumarin moiety), 8.03 (1 H, d, ${}^{3}J_{HH} = 8 \text{ Hz}$, CH of coumarin moiety), 8.56 (1 H, d, ${}^{3}J_{HH} = 7$ Hz, NH), 12.50 (1 H, very broad, OH). ¹³C NMR (125.8 MHz, d₆-DMSO): δ 23.22 (*C*H₃), 47.40 (*C*H), 105.03, 116.82, 117.21, 124.54, 124.84, 132.56, 153.29, 162.09, and 170.17 (carbons of coumarin moiety), 127.09, 129.07, 129.92, 130.62, 133.36, and 138.90 (carbons of C₆H₄Cl), 162.80

N-[(3-nitrophenyl)(4-hydroxy-2-oxo-2H-chromen-3-yl)methyl]acetamide (3e): White powder, m.p. 195–196°C, IR (KBr) (v_{max} cm⁻¹): 3315 (NH), 1676, 1634, (2 C=O). Analyses: Calcd. for C₁₈H₁₄N₂O₆: C, 61.02; H, 3.98; N, 7.91%. Found: C, 60.9; H, 4.1; N, 7.9. MS (m/z, %): 354 (10). ¹H NMR (500 MHz, d₆-DMSO): δ 2.01 (3 H, s, C H_3), 6.49 (1 H, d, ${}^3J_{\rm HH}$ = 7 Hz, CH), 7.42 (2 H, m, 2 CH of coumarin moiety), 7.56 (1 H, t, ${}^3J_{\rm HH}$ = 8 Hz, CH of C₆H₄NO₂), 7.65 (1 H, t, ${}^{3}J_{HH}$ = 8 Hz, CH of coumarin moiety), 7.78 (1 H, d, ${}^{3}J_{HH} = 8$ Hz, CH of $C_{6}H_{4}NO_{2}$), 8.03 (1 H, d, ${}^{3}J_{HH} = 8$ Hz, CH of coumarin moiety), 8.10 (1 H, d, ${}^{3}J_{HH} = 8$ Hz, CH of $C_{6}H_{4}NO_{2}$), 8.17(1 H, s, CH of $C_6H_4NO_2$), 8.69 (1 H, d, $^3J_{HH}$ = 7 Hz, NH). ^{13}C NMR (125.8 MHz, d_6 -DMSO): δ 22.91 (CH_3), 47.13 (CH), 105.46, 116.45, 116.85, 124.37, 124.56, 133.09, 152.90, 162.01, and 170.29 (carbons of coumarin moiety), 121.15, 122.04, 129.97, 133.43, 143.95, and 148.14 (carbons of $C_6H_4NO_2$), 162.40 (NC=O).

N-[(4-nitrophenyl)(4-hydroxy-2-oxo-2H-chromen-3yl)methyl]acetamide (3f): White powder, m.p. 179-182°C, IR (KBr) (v_{max} cm⁻¹): 3350 (NH), 1691, 1636, (2 C=0). Analyses: Calcd. for C₁₈H₁₄N₂O₆: C, 61.02; H, 3.98; N, 7.91%. Found: C, 61.0; H, 4.1; N, 7.9. MS (*m/z*, %): 354 (13). ¹H NMR (500 MHz, d₆-DMSO): δ 2.02 (3 H, s, CH_3), 6.69 (1 H, d, $^3J_{\rm HH}$ = 8 Hz, CH), 7.42 (2 H, m, 2 CH of coumarin metery), 7.52 (2 H, d, $^3J_{\rm HH}$ = 8 Hz, 2 CH of $C_6H_4NO_2$), 7.65 (1 H, t, $^3J_{\rm HH}$ = 8 Hz, CH of coumarin metery), 8.03 (1 H, d, $^3J_{\rm HH}$ = 8 Hz, CH of coumarin met $^{3}J_{\text{HH}} = 8 \text{ Hz}, CH \text{ of coumarin molecy}, 8.22 (2 \text{ H, d,} \, ^{3}J_{\text{HH}} = 8 \text{ Hz}, 2 \text{ CH of C}_{6}\text{H}_{4}\text{NO}_{2}), 8.62 (1 \text{ H, d,} \, ^{3}J_{\text{HH}} = 8 \text{ Hz}, NH). \, ^{13}\text{C NMR} (125.8 \text{ MHz}, d_{6}\text{-DMSO}): \, \delta \, 22.91 \, (C\text{H}_{3}), \, 47.39 \, (C\text{H}), \, 105.47, \, 116.17, \, 116.43, \, 124.38, \, 124.64, \, 133.19, \, 152.97, \, 162.01, \, \text{and} \, 170.29 \, (\text{carbons})$ of coumarin moiety), 123.63, 127.77, 133.19, and 149.54 (carbons of $C_6H_4NO_2$), 162.40 (NC=O).

N-[(3-methoxyphenyl)(4-hydroxy-2-oxo-2H-chromen-3-yl)]methyl]acetamide (3g): White powder, m.p. 203-206°C, IR (KBr) $(v_{\text{max}} \text{ cm}^{-1})$: 3300 (NH), 1677, 1631, (2 C=O). Analyses: Calcd. for $C_{19}H_{17}NO_5$: C, 67.25; H, 5.05; N, 4.13%. Found: C, 67.2; H, 5.2; N, 4.2. MS (m/z, %): 339 (7). ¹H NMR (500 MHz, d₆-DMSO): δ 2.00 (3 H, s, C H_3), 3.72 (3 H, s, OC H_3), 6.60 (1 H, d, $^3J_{\rm HH}$ = 8 Hz, C H_3), 6.78 (1 H, m, CH of C₆H₄OMe), 6.90 (1 H, s, CH of C₆H₄OMe), 7.19 (1 H, m, CH of C₆H₄OMe), 7.31 (3 H, m, 2 CH of coumarin moiety and CH of C_6H_4OMe), 7.65 (1 H, t, $^3J_{HH}$ = 8 Hz, CH of coumarin moiety), 8.03 (1 H, d, ${}^3J_{\rm HH}$ = 8 Hz, CH of coumarin moiety), 8.69 (1 H, d, ${}^{3}J_{\text{HH}}$ = 8 Hz, N*H*). ${}^{13}\text{C}$ NMR (125.8 MHz, d₆-DMSO): δ 22.99(CH₃), 47.36CH), 55.43 (OCH₃), 106.33, 116.50, 116.80, 124.24, 124.54, 132.91, 152.79, 161.77, and 170.08 (carbons of coumarine moiety), 111.85, 112.84, 118.86, 129.54, 142.69, 159.62 (carbons of $C_6H_4NO_2$), 162.11 (NC=O).

N-[(2-methoxyphenyl)(4-hydroxy-2-oxo-2H-chromen-3-yl)methyl]acetamide (3h): White powder, m.p. 190-191°C, IR (KBr) (v_{max} cm⁻¹): 3405, 3300 (NH), 1677, 1631, (2 C=O). Analyses: Calcd. (max for C₁₉H₁₇NO₅: C, 67.25; H, 5.05; N, 4.13%. Found: C, 67.2; H, 5.1; N, 4.2. MS (*m*/*z*, %): 339 (10). ¹H NMR (500 MHz, d₆-DMSO): δ 1.91 (3 H, s, CH₃), 3.67 (3 H, s, OCH₃), 6.53 (1 H, d, ${}^{3}J_{HH} = 8$ Hz, CH), 6.89 (2 H, m, 2 CH of C₆H₄OMe), 7.21 (1 H, m, CH of C_6H_4OMe), 7.31 (2 H, m, 2 CH of coumarin moiety), 7.46 (1 H, d, ${}^3J_{\rm HH} = 7$ Hz, CH of C_6H_4OMe), 7.65 (1 H, t, ${}^3J_{\rm HH} = 8$ Hz, CH of coumarin moiety), 8.00 (1 H, d, ${}^3J_{\rm HH} = 8$ Hz, CH of coumarin moiety), 8.43 (1 H, d, ${}^3J_{\rm HH} = 8$ Hz, NH), 12.50 (1 H, very broad, OH). ¹³C NMR (125.8 MHz, d₆-DMSO): δ 23.22 (CH₃), 44.89 (CH), 56.78 (OCH₃), 106.06, 116.76, 116.97, 124.51, 124.76, 132.99, 153.08, 161.84, and 170.53 (carbons of coumarin moiety), 111.65, 120.47, 128.20, 128.74, 137.25, and 157.32 (carbons of C₆H₄OMe), 162.30 (NC=O).

N-[(2-hydroxyphenyl)(4-hydroxy-2-oxo-2H-chromen-3-yl)methyl]acetamide (3i): White powder, m.p. 146-148°C, IR (KBr) $(v_{\text{max}} \text{ cm}^{-1})$: 3300 (NH), 1670, 1635, (2 C=O). Analyses: Calcd. for $C_{18}H_{15}NO_5$: C, 66.46; H, 4.65; N, 4.31%. Found: C, 66.3; H, 4.5; N, 4.3. MS (m/z, %): 325 (15). ¹H NMR (500 MHz, d₆-DMSO): δ 1.96 (3 H, s, CH_3), 6.48 (1 H, d, ${}^3J_{HH}$ = 8 Hz, CH), 6.71 (1 H, d, ${}^3J_{HH}$ = 8 Hz, CH of C_6H_4OH), 6.77 (1 H, t, ${}^3J_{HH}$ = 7 Hz, CH of C_6H_4OH), 7.04 (1 H, t, ${}^{3}J_{HH} = 7$ Hz, CH of C₆H₄OH), 7.37 (3 H, m, 2 CH of coumarin moiety and CH of C_6H_4OH), 7.62 (1 H, t, ${}^3J_{HH} = 8$ Hz, CH of coumarin moiety), 7.97 (1 H, d, ${}^3J_{HH} = 8$ Hz, CH of coumarin moiety), 8.58 (1 H, d, ${}^3J_{HH} = 8$ Hz, NH). ${}^{13}C$ NMR (125.8 MHz, d₆-DMSO): δ 23.29 (CH₃), 45.03 (CH), 106.16, 116.98, 117.26, 124.46, 124.77, 132.98, 153.08, 162.02, and 170.75 (carbons of coumarin moiety), 115.68, 119.05, 126.81, 128.44, 129.06, and 155.18 (carbons of C₆H₄OH), 162.36 (NC=O).

N-{4-[Acetylamino(4-hydroxy-2-oxo-2H-chromen-3-yl)methyl] phenyl}(4-hydroxy-2-oxo-2H-chromen-3-yl)methyl]acetamide

White powder, m.p. 230-233°C, IR (KBr) (v_{max} cm⁻¹): 3295 (NH), 1666, 1635, (2 C=O). Analyses: Calcd. for $C_{30}H_{24}N_2O_8$: C, 66.66; H, 4.48; N, 5.18%. Found: C, 66.5; H, 4.5; N, 5.3. MS (m/z, %): 540 (3). ¹H NMR (500 MHz, d₆-DMSO): δ 1.91 (6 H, s, 2 CH₃), 6.53 (2 H, d, $^{3}J_{HH} = 8 \text{ Hz}, 2 \text{ C}H$), 7.24 (4 H, s, 4 CH of C₆H₄), 7.39 (4 H, m, 4 CH of coumarin moieties), 7.64 (2 H, t, $^{3}J_{HH} = 7 \text{ Hz}, 2 \text{ C}H$ of coumarin moieties), 8.01 (2 H, d, $^{3}J_{HH} = 8 \text{ Hz}, 2 \text{ C}H$ of coumarin moieties), 8.48 (2 H, d, $^{3}J_{HH} = 7 \text{ Hz}, 2 \text{ N}H$). ^{13}C NMR (125.8 MHz, d₆-DMSO): δ 23.37 (CH₃), 47.71 (CH), 106.55, 116.92, 117.16, 124.61, 124.90, 133.28, 153.18, 162.20, and 172.88 (carbons of coumarin moieties), 126.69 and 139.66 (carbons of C_6H_4), 162.57 (NC=O).

Received 16 July 2007; accepted 20 September 2007 Paper 07/4749 doi: 10.3184/030823407X247785

References

- For two recent review see: (a) C. Hulme and V. Core, Curr. Med. Chem., 2003, 10, 51; (b) C. Hulme and T. Nixey, Curr. Opin. Drug Discov. Today, 2003, 6, 921.
- (a) C. Hulme, S.Y. Tang, C.J. Burns, I. Morize and R. Labaudiniere, J. Org. Chem., 1998, 63, 8021; (b) C. Hulme, J. Peng, G. Morton, J.M. Salvino, T. Herpin and R. Labaudiniere, Tetrahedron Lett., 1998, 39, 7227; (c) C. Hulme, M. Morrissette, F. Vols and C. Burns, Tetrahedron Lett., 1998, 39, 1113; (d) C. Hulme, L. Ma, J. Romano and M. Morrissette, Tetrahedron Lett., 1999, 40, 7925; (e) C. Hulme, J. Peng, B. Louridas, P. Menard, P. Krolikowski and N.V. Kumar, Tetrahedron Lett., 1998, 39, 8047; (e) R.W. Armstrong, P. Tempest and J. Cargill, Chimia, 1996, 50,
- 3 R. O'Kennedy and R.D. Thornes, Coumarins: Biology, Applications and mode of action; John Wiley & Sons: Chichester, 1997
- M. Zabradnik, The production and application of fluorescent brightening
- agents; John Wiley & Sons: New York, 1992. R.D. Murray, J. Mendez and S.A. Brown, *The natural coumarins: Occurrence, chemistry and biochemistry*, John Wiley & Sons: New York,
- 6 J.R. Casimir, C. Turreta, L. Ettouati and J. Paris, Tetrahedron Lett., 1995,
- D. Bahulayan, S.K. Das and J. Iqbal, J. Org. Chem., 2003, 68, 5735.
- M.M. Khodaei, A.R. Khosropour and P. Fattahpour, Tetrahedron Lett., 2005, 46, 2105
- E. Rafiee, F. Shahbazi, M. Joshaghani and F. Tork, J. Molec, Cat. A. 2005. 242, 129.
- 10 E. Rafiee, F. Tork and M. Joshaghani, Bioorg. Med. Chem. Lett., 2006, 16,